skip to main content


Search for: All records

Creators/Authors contains: "Kwak, Hannah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the detection of transverse magnetohydrodynamic waves, also known as Alfvénic waves, in the chromospheric fibrils of a solar-quiet region. Unlike previous studies that measured transversal displacements of fibrils in imaging data, we investigate the line-of-sight (LOS) velocity oscillations of the fibrils in spectral data. The observations were carried out with the Fast Imaging Solar Spectrograph of the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. By applying spectral inversion to the Hαand Caii8542 Å line profiles, we determine various physical parameters, including the LOS velocity in the chromosphere of the quiet Sun. In the Hαdata, we select two adjacent points along the fibrils and analyze the LOS velocities at those points. For the time series of the velocities that show high cross-correlation between the two points and do not exhibit any correlation with intensity, we interpret them as propagating Alfvénic wave packets. We identify a total of 385 Alfvénic wave packets in the quiet-Sun fibrils. The mean values of the period, velocity amplitude, and propagation speed are 7.5 minutes, 1.33 km s−1, and 123 km s−1, respectively. We find that the detected waves are classified into three groups based on their periods, namely, 3, 5, and 10 minute bands. Each group of waves exhibits distinct wave properties, indicating a possible connection to their generation mechanism. Based on our results, we expect that the identification of Alfvénic waves in various regions will provide clues to their origin and the underlying physical processes in the solar atmosphere.

     
    more » « less
    Free, publicly-accessible full text available November 20, 2024
  2. Abstract A multilayer spectral inversion (MLSI) model has recently been proposed for inferring the physical parameters of plasmas in the solar chromosphere from strong absorption lines taken by the Fast Imaging Solar Spectrograph (FISS). We apply a deep neural network (DNN) technique in order to produce the MLSI outputs with reduced computational costs. We train the model using two absorption lines, H α and Ca ii 8542 Å, taken by FISS, and 13 physical parameters obtained from the application of MLSI to 49 raster scans (∼2,000,000 spectra). We use a fully connected network with skip connections and multi-branch architecture to avoid the problem of vanishing gradients and to improve the model’s performance. Our test shows that the DNN successfully reproduces the physical parameters for each line with high accuracy and a computing time of about 0.3–0.4 ms per line, which is about 250 times faster than the direct application of MLSI. We also confirm that the DNN reliably reproduces the temporal variations of the physical parameters generated by the MLSI inversion. By taking advantage of the high performance of the DNN, we plan to provide physical parameter maps for all the FISS observations, in order to understand the chromospheric plasma conditions in various solar features. 
    more » « less
  3. It is not yet fully understood how magnetohydrodynamic waves in the interior and atmosphere of the Sun are excited. Traditionally, turbulent convection in the interior is considered to be the source of wave excitation in the quiet Sun. Over the last few decades, acoustic events observed in the intergranular lanes in the photosphere have emerged as a strong candidate for a wave excitation source. Here we report our observations of wave excitation by a new type of event: rapidly changing granules. Our observations were carried out with the Fast Imaging Solar Spectrograph in the H α and Ca  II 8542 Å lines and the TiO 7057 Å broadband filter imager of the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. We identify granules in the internetwork region that undergo rapid dynamic changes such as collapse (event 1), fragmentation (event 2), or submergence (event 3). In the photospheric images, these granules become significantly darker than neighboring granules. Following the granules’ rapid changes, transient oscillations are detected in the photospheric and chromospheric layers. In the case of event 1, the dominant period of the oscillations is close to 4.2 min in the photosphere and 3.8 min in the chromosphere. Moreover, in the Ca  II –0.5 Å raster image, we observe repetitive brightenings in the location of the rapidly changing granules that are considered the manifestation of shock waves. Based on our results, we suggest that dynamic changes of granules can generate upward-propagating acoustic waves in the quiet Sun that ultimately develop into shocks. 
    more » « less
  4. null (Ed.)
    The solar chromosphere can be observed well through strong absorption lines. We infer the physical parameters of chromospheric plasmas from these lines using a multilayer spectral inversion. This is a new technique of spectral inversion. We assume that the atmosphere consists of a finite number of layers. In each layer the absorption profile is constant and the source function varies with optical depth with a constant gradient. Specifically, we consider a three-layer model of radiative transfer where the lowest layer is identified with the photosphere and the two upper layers are identified with the chromosphere. The absorption profile in the photosphere is described by a Voigt function, and the profile in the chromosphere by a Gaussian function. This three-layer model is fully specified by 13 parameters. Four parameters can be fixed to prescribed values, and one parameter can be determined from the analysis of a satellite photospheric line. The remaining 8 parameters are determined from a constrained least-squares fitting. We applied the multilayer spectral inversion to the spectral data of the H α and the Ca  II 854.21 nm lines taken in a quiet region by the Fast Imaging Solar Spectrograph (FISS) of the Goode Solar Telescope (GST). We find that our model successfully fits most of the observed profiles and produces regular maps of the model parameters. The combination of the inferred Doppler widths of the two lines yields reasonable estimates of temperature and nonthermal speed in the chromosphere. We conclude that our multilayer inversion is useful to infer chromospheric plasma parameters on the Sun. 
    more » « less
  5. Context. We investigate the chromospheric counterpart of small-scale coronal loops constituting a coronal bright point (CBP) and its response to a photospheric magnetic-flux increase accompanied by co-temporal CBP heating. Aims. The aim of this study is to simultaneously investigate the chromospheric and coronal layers associated with a CBP, and in so doing, provide further understanding on the heating of plasmas confined in small-scale loops. Methods. We used co-observations from the Atmospheric Imaging Assembly and Helioseismic Magnetic Imager on board the Solar Dynamics Observatory, together with data from the Fast Imaging Solar Spectrograph taken in the H α and Ca  II 8542.1 Å lines. We also employed both linear force-free and potential field extrapolation models to investigate the magnetic topology of the CBP loops and the overlying corona, respectively. We used a new multi-layer spectral inversion technique to derive the temporal variations of the temperature of the H α loops (HLs). Results. We find that the counterpart of the CBP, as seen at chromospheric temperatures, is composed of a bundle of dark elongated features named in this work H α loops, which constitute an integral part of the CBP loop magnetic structure. An increase in the photospheric magnetic flux due to flux emergence is accompanied by a rise of the coronal emission of the CBP loops, that is a heating episode. We also observe enhanced chromospheric activity associated with the occurrence of new HLs and mottles. While the coronal emission and magnetic flux increases appear to be co-temporal, the response of the H α counterpart of the CBP occurs with a small delay of less than 3 min. A sharp temperature increase is found in one of the HLs and in one of the CBP footpoints estimated at 46% and 55% with respect to the pre-event values, also starting with a delay of less than 3 min following the coronal heating episode. The low-lying CBP loop structure remains non-potential for the entire observing period. The magnetic topological analysis of the overlying corona reveals the presence of a coronal null point at the beginning and towards the end of the heating episode. Conclusions. The delay in the response of the chromospheric counterpart of the CBP suggests that the heating may have occurred at coronal heights. 
    more » « less